vars.io

Peano Axioms


The naturals are defined as a set of objects which obey the following axioms:

  1. 00 is natural.
  2. If nn is a natural, then n+ ⁣+n{+\!+} is also natural.
  3. n+ ⁣+0n{+\!+} ≠ 0.
  4. n+ ⁣+=m+ ⁣+n{+\!+} = m{+\!+} can be rewritten as n=mn = m.
  5. Let PP be a proposition over any natural nn. If P(0)P(0) is true, and if whenever P(n)P(n) is true we also have P(n+ ⁣+)P(n{+\!+}) is true, then PP is true for any natural.

Logical Assumptions

Let a,b,ca, b, c be naturals.

a=a(reflexive) a = a \tag{reflexive}
a=bb=a(symmetric) a = b ⟷ b = a \tag{symmetric}
(a=b)(b=c)a=c(transitive) (a = b) ∧ (b = c) ⟶ a = c \tag{transitive}

Set Theory with 2nd Order Logic

(Ø,N):ØN ∃(Ø, ℕ): Ø ∈ ℕ
(n):n{n}N ∀(n): n ∪ \{ n \} ∈ ℕ
(n,m):n{n}=m{m}n=m ∀(n, m): n ∪ \{ n \} = m ∪ \{ m \} ⟶ n = m
(n):[P(Ø)P(n)P(n{n})]P(n) ∀(n): [P(Ø) ∧ P(n) → P(n ∪ \{ n \})] ⟶ P(n)

Definition 1: Addition

Addition ++ is a closed binary operator over any pair of naturals (n,m)(n,m).

{0+m=m(n+ ⁣+)+m=(n+m)+ ⁣+ \begin{cases} \begin{aligned} 0 + m &= m \\ (n{+\!+}) + m &= (n + m){+\!+} \\ \end{aligned} \end{cases}

Proposition 1: n+0=nn + 0 = n

We use induction to ask if the proposition P(n)n+0=nP(n) ↦ n + 0 = n is true for any natural nn.

Base Case

We evaluate the base case P(0)P(0) which maps to the proposition 0+0=00 + 0 = 0.

0+0=?00=0\begin{aligned} 0 + 0 &\stackrel{?}{=} 0 \\ 0 &\stackrel{✓}{=} 0 \\ \end{aligned}

We use the definition of addition to rewrite the left-hand side of the equation to arrive at 0=00 = 0, which we know to be reflexively true.

Inductive Case

For any specific nn, is assuming P(n)P(n) is sufficient to know P(n+ ⁣+)P(n{+\!+})?

(n+ ⁣+)+0=n+ ⁣+(n+0)+ ⁣+=n+ ⁣+n+0=n\begin{aligned} (n{+\!+}) + 0 &= n{+\!+} \\ (n + 0){+\!+} &= n{+\!+} \\ n + 0 &= n \\ \end{aligned}

The case of P(n+ ⁣+)P(n{+\!+}) can be written as P(n)P(n). By the inductive axiom we know that P(n)P(n) is true for all naturals.

Proposition 2: n+(m+ ⁣+)=(n+m)+ ⁣+n + (m{+\!+}) = (n + m){+\!+}

Using induction we ask if P(n)n+m+ ⁣+=(n+m)+ ⁣+P(n) ↦ n + m{+\!+} = (n + m){+\!+} is true for any n,mNn, m ∈ ℕ. Informally we are wondering whether we can use a “reversed” rule for addition as a stepping stone to commutativity.

Base Case

0+m+ ⁣+=(0+m)+ ⁣+m+ ⁣+=m+ ⁣+\begin{aligned} 0 + m{+\!+} &= (0 + m){+\!+} \\ m{+\!+} &= m{+\!+} \\ \end{aligned}

Inductive Case

(n+ ⁣+)+(m+ ⁣+)=((n+ ⁣+)+m)+ ⁣+(1) (n{+\!+}) + (m{+\!+}) = ((n{+\!+}) + m){+\!+} \tag{1}
(n+(m+ ⁣+))+ ⁣+=((n+m)+ ⁣+)+ ⁣+(2) (n + (m{+\!+})){+\!+} = ((n + m){+\!+}){+\!+} \tag{2}
n+(m+ ⁣+)=(n+m)+ ⁣+(3) n + (m{+\!+}) = (n + m){+\!+} \tag{3}
  1. This is our inductive hypothesis.
  2. We rewrite the expression on both sides according to definition of addition.
  3. We removed a layer of succession from both sides by the 4th Peano axiom.

The case of P(n+ ⁣+)P(n{+\!+}) can be rewritten as P(n)P(n).

Corollary 1: n+ ⁣+=n+1n{+\!+} = n + 1

n+(0+ ⁣+)=?n+ ⁣+(n+0)+ ⁣+=n+ ⁣+n+ ⁣+=n+ ⁣+\begin{aligned} n + (0{+\!+}) \stackrel{?}{=} n{+\!+} \\ (n + 0){+\!+} = n{+\!+} \\ n{+\!+} = n{+\!+} \\ \end{aligned}

Theorem 1: Commutativity of Addition

We ask whether P(n)n+m=m+nP(n) ↦ n + m = m + n is always true.

Base Case

P(0)=0+m=m+0P(0) \stackrel{✓}{=} 0 + m = m + 0

Inductive Case

We want to know if assuming P(n)P(n) implies P(n+ ⁣+)P(n{+\!+}).

(n+ ⁣+)+m=?m+(n+ ⁣+)(n+m)+ ⁣+=m+(n+ ⁣+)(n+m)+ ⁣+=(m+n)+ ⁣+n+m=m+n\begin{aligned} (n{+\!+}) + m &\stackrel{?}{=} m + (n{+\!+}) \\ (n + m){+\!+} &= m + (n{+\!+}) \\ (n + m){+\!+} &= (m + n){+\!+} \\ n + m &\stackrel{✓}{=} m + n \\ \end{aligned}

The case of P(n+ ⁣+)P(n{+\!+}) can be rewritten as P(n)P(n).

Proposition: Associativity of Addition

P(b)a+(b+c)=(a+b)+c P(b) ↦ a + (b + c) = (a + b) + c

Base Case

a+(0+c)=?(a+0)+c a + (0 + c) \stackrel{?}{=} (a + 0) + c
a+c=a+c a + c \stackrel{✓}{=} a + c

Inductive Case

a+(b+ ⁣++c)=?(a+b+ ⁣+)+ca+(b+c)+ ⁣+=(a+b)+ ⁣++c(a+b+c)+ ⁣+=(a+b+c)+ ⁣+a+b+c=a+b+c\begin{aligned} a + (b{+\!+} + c) &\stackrel{?}{=} (a + b{+\!+}) + c \\ a + (b + c){+\!+} &= (a + b){+\!+} + c \\ (a + b + c){+\!+} &= (a + b + c){+\!+} \\ a + b + c &\stackrel{✓}{=} a + b + c \\ \end{aligned}

The case of P(n+ ⁣+)P(n{+\!+}) can be rewritten as P(n)P(n).

Theorem 3: Cancellation of Addition

P(n)a+n=b+na=bP(n) ↦ a + n = b + n ⟶ a = b

Base Case

a+0=b+0?a=ba=ba=b\begin{aligned} a + 0 = b + 0 \stackrel{?}{⟶} a = b \\ a = b \stackrel{✓}{⟶} a = b \\ \end{aligned}

Inductive Case

a+(n+ ⁣+)=b+(n+ ⁣+)?a=b(a+n)+ ⁣+=(b+n)+ ⁣+a=ba+n=b+na=b\begin{aligned} a + (n{+\!+}) = b + (n{+\!+}) \stackrel{?}{⟶} a = b \\ (a + n){+\!+} = (b + n){+\!+} ⟶ a = b \\ a + n = b + n \stackrel{✓}{⟶} a = b \\ \end{aligned}

Definition: Positivity

Any non-zero natural is positive.

Proposition: Positive Addition

If mm is positive, then (n+m)(n + m) is also positive.

P(n)n+(m+ ⁣+)0 P(n) ↦ n + (m{+\!+}) ≠ 0

Base Case

0+(m+ ⁣+)0m+ ⁣+0\begin{aligned} 0 + (m{+\!+}) ≠ 0 \\ m{+\!+} \stackrel{✓}{≠} 0 \\ \end{aligned}

Inductive Case

(n+ ⁣+)+(m+ ⁣+)0(n{+\!+}) + (m{+\!+}) ≠ 0
(n+(m+ ⁣+))+ ⁣+(n + (m{+\!+})){+\!+} \stackrel{✓}{≠}

This also means that both n,mn, m must be 00 for the expression (n+m=0)(n + m = 0).

Corollary: Positives have unique predecessor

Argument. For every positive natural nn there exists a unique natural aa such that n=a+ ⁣+n = a{+\!+}.

Proof. Let’s say there exists another natural bb where (b+ ⁣+=n)(b{+\!+} = n). Then (a+ ⁣+=b+ ⁣+)(a{+\!+} = b{+\!+}) which implies (a=b)(a = b). This means all predecessors are unique. Now let’s say that for all positive nn we have (n=a+ ⁣+)(n = a{+\!+}).

P(n):=(a):n=a+ ⁣+P(n) := ∃(a): n = a{+\!+}
P(1)1=0+ ⁣+P(1) ↦ 1 \stackrel{✓}{=} 0{+\!+}
P(n+ ⁣+)n+ ⁣+=?a+ ⁣+P(n{+\!+}) ↦ n{+\!+} \stackrel{?}{=} a{+\!+}
n=an \stackrel{✓}{=} a

Definition: Greater/Lesser or Equal

For any naturals {a,b}\{ a, b \} the partial order (ab)(a ≤ b) is defined as the proposition that there exists a natural nn where (a+n=b)(a + n = b) is true.

(ab):=(n):a+n=b(a ≤ b) := ∃(n) : a + n = b

Since nn could be 00 it’s possible that a=ba = b. If nn were positive then we know that aba ≠ b, which is how we define the strict order operator:

(a<b):=(ab)(ab)(a < b) := (a ≤ b) ∧ (a ≠ b)

This definition can be restated as:

a<b(a+n=b)(n0)a<ba+(n+ ⁣+)=b\begin{aligned} a < b &⟶ (a + n = b) ∧ (n ≠ 0) \\ a < b &⟶ a + (n{+\!+}) = b \\ \end{aligned}

Lemma: Trichotemy of the Naturals

For any two naturals {a,b}\{ a, b \} only one of these statements can be true at a time. This can be finitely proven through truth tabling.

{(a<b)¬(a=b)¬(b<a)(b<a)¬(a=b)¬(a<b)(a=b)¬(a<b)¬(b<a)\begin{cases} (a < b) ⟶ ¬(a = b) ∧ ¬(b < a) \\ (b < a) ⟶ ¬(a = b) ∧ ¬(a < b) \\ (a = b) ⟶ ¬(a < b) ∧ ¬(b < a) \\ \end{cases}

We have (ab)(a ≠ b) by definition which leaves whether (b<a)(b < a).

a<ba+(n+ ⁣+)=ba < b ⟶ a + (n{+\!+}) = b
b<ab+(m+ ⁣+)=ab < a ⟶ b + (m{+\!+}) = a
b+(m+ ⁣+)+(n+ ⁣+)=bb + (m{+\!+}) + (n{+\!+}) = b

If we set (b=0)(b = 0) then we reach a contradiction right away because a successor cannot be 00.

Proposition: Reflexivity of Partial Order

aa a ≤ a

Proof

aa(n):a+n=aa ≤ a ⟶ ∃(n) : a + n = a
a+0a=aa + 0 ⟶ a \stackrel{✓}{=} a

Proposition: Transitivity with Partial Order

(ab)(bc)(ac)(a ≤ b) ∧ (b ≤ c) ⟶ (a ≤ c)

Proof

{aba+n0=bbcb+n1=caca+n2=c\begin{cases} a ≤ b ⟶ a + n_0 = b \\ b ≤ c ⟶ b + n_1 = c \\ a ≤ c ⟶ a + n_2 = c \\ \end{cases}

Since b+n1b + n_1 and a+n2a + n_2 both equal cc, we use substitution to produce this expression:

b+n1=a+n2b + n_1 = a + n_2

I use substitution for b=a+n0b = a + n_0:

a+n0+n1=a+n2a + n_0 + n_1 = a + n_2
n0+n1=n2a+n0+n1=cn_0 + n_1 = n_2 ⟶ a + n_0 + n_1 = c

In a way this is saying that the addition of “intervals” are linear.

Proposition of Anti-Reflexivity

(ab)(ba)(a=b)(a ≤ b) ∧ (b ≤ a) ⟶ (a = b)

Proof

{(ab)a+n0=b(ba)b+n1=a\begin{cases} (a ≤ b) ⟶ a + n_0 = b \\ (b ≤ a) ⟶ b + n_1 = a \\ \end{cases}

I use substitution on b=a+n0b = a + n_0 to produce the expression:

a+n0+n1=aa + n_0 + n_1 = a
n0+n1=0n_0 + n_1 = 0
(n0+n1=0)(a+n0=b+n1)a=b(n_0 + n_1 = 0) ∧ (a + n_0 = b + n_1) ⟶ a = b

Therefore (a+n0=b)(b+n1=a)(a + n_0 = b) ∧ (b + n_1 = a) implies a=ba = b.

Addition Preserves Order

P(n)(a+n)(b+n)?abP(n) ↦ (a + n) ≤ (b + n) \stackrel{?}{⟶} a ≤ b
a+n+x=b+na + n + x = b + n
a+x=ba + x = b

Base Case

P(0)=a+0b+0abP(0) = a + 0 ≤ b + 0 \stackrel{✓}{⟶} a ≤ b

Inductive Case

P(n+ ⁣+)a+(n+ ⁣+)b+(n+ ⁣+)?abP(n{+\!+}) ↦ a + (n{+\!+}) ≤ b + (n{+\!+}) \stackrel{?}{⟶} a ≤ b
a+(n+ ⁣+)+x=b+(n+ ⁣+)a + (n{+\!+}) + x = b + (n{+\!+})
a+x=ba + x = b

Strict Order and Succession

a<b?a+ ⁣+ba < b \stackrel{?}{⟶} a{+\!+} ≤ b

I rewrite the left predicate by the definition of strict order and I rewrite the right predicate by the definition of partial order.

(a+n=b)(ab)?(a+ ⁣+)+n=b(a + n = b) ∧ (a ≠ b) \stackrel{?}{⟶} (a{+\!+}) + n = b
(a+n=b)(ab)a+(n+ ⁣+)=b(a + n = b) ∧ (a ≠ b) \stackrel{✓}{⟶} a + (n{+\!+}) = b