vars.io

Linear Maps


Let V,W\mathcal{V}, \mathcal{W} be vector spaces over a field π–₯π–₯. Then a linear map Ξ¦:Vβ†’W\Phi: \mathcal{V} β†’ \mathcal{W} is a function which preserves the vector space properties of V\mathcal{V} when mapping to W\mathcal{W}.

Φ(σ1v⃗1+⋯+σnv⃗n)=σ1Φ(v⃗1)+⋯+σnΦ(v⃗n)\Phi(σ_1 \vec{v}_1 + ⋯ + σ_n \vec{v}_n) = σ_1 \Phi(\vec{v}_1) + ⋯ + σ_n \Phi(\vec{v}_n)

Where Οƒi∈π–₯Οƒ_i ∈ π–₯ and vβƒ—i∈V\vec{v}_i ∈ \mathcal{V}.

A linear map may also be known as a linear function, operator, transformation, or homomorphism.

Discussion

Image and Rank

The image or range of a linear map Φ:V→W\Phi : \mathcal{V} → \mathcal{W} is the subset of W\mathcal{W} which has a mapping from V\mathcal{V}.

img⁑Φ:={β€…β€ŠΞ¦vβƒ—βˆ£vβƒ—βˆˆVβ€…β€Š} \operatorname{img} \Phi := \{\; \Phi \vec{v} \mid \vec{v} ∈ \mathcal{V} \;\}

The rank of a linear map is the dimension of its image.

rank⁑Φ:=dim⁑img⁑Φ \operatorname{rank} \Phi := \dim \operatorname{img} \Phi

Any linear map which is injective is full-rank or monomorphic, and otherwise the map is considered rank-deficient. In the finite-dimensional case, rank-deficiency can be defined as the dimension of the domain subtracted by the rank.

dim⁑Wβˆ’rank⁑Φ \dim \mathcal{W} - \operatorname{rank} \Phi

Nullspace and Nullity

The nullspace or kernel of a linear map Φ:V→W\Phi: \mathcal{V} → \mathcal{W} is the subset of V\mathcal{V} mapped to 0⃗\vec{0}.

null⁑Φ:={vβƒ—βˆˆV∣Φvβƒ—=0βƒ—} \operatorname{null} \Phi := \{ \vec{v} ∈ \mathcal{V} \mid \Phi \vec{v} = \vec{0} \}

The nullity of a linear map is the dimension of its nullspace.

nullity⁑Φ:=dim⁑null⁑Φ \operatorname{nullity} \Phi := \dim \operatorname{null} \Phi

Discussion

Rank Nullity Theorem

Let Φ:V→W\Phi: \mathcal{V} → \mathcal{W} be a linear map with finite-dimensional V\mathcal{V}. The rank-nullity theorem states:

rank⁑Φ+nullity⁑Φ=dim⁑V \operatorname{rank} \Phi + \operatorname{nullity} \Phi = \dim \mathcal{V}

The rank-nullity theorem can be modified for infinite-dimensional spaces by interpreting the sum of disjoint cardinalities as the cardinality of their union.

Vector Space of Linear Maps

The set of all linear maps from V\mathcal{V} to W\mathcal{W} is written L(V,W)\mathcal{L}(\mathcal{V}, \mathcal{W}) or hom⁑π–ͺ(V,W)\hom_π–ͺ (\mathcal{V}, \mathcal{W}) where π–ͺπ–ͺ is the ground field (or division ring for generalization to modules).

Sum of maps

Let Ξ¦i∈L(V,W)\Phi_i ∈ \mathcal{L}(\mathcal{V}, \mathcal{W}) be over π–₯π–₯. The sum of linear maps is defined:

(Φ1+Φ2)v⃗:=Φ1v⃗+Φ2v⃗ (\Phi_1 + \Phi_2) \vec{v} := \Phi_1 \vec{v} + \Phi_2 \vec{v}

Where vβƒ—βˆˆV\vec{v} ∈ \mathcal{V}.

Scalar multiplication of maps

Let Οƒi∈π–₯Οƒ_i ∈ π–₯. The scalar multiplication of linear maps is defined:

σ1(σ2Φ)v⃗:=(σ1σ2)Φv⃗ σ_1 (σ_2 \Phi) \vec{v} := (σ_1 σ_2) \Phi \vec{v}

Discussion

The elements of L(V,W)\mathcal{L}(\mathcal{V}, \mathcal{W}) form a vector space under the sum and scaling of linear maps.

(βˆ‘ΟƒiΞ¦i)vβƒ—=βˆ‘Οƒi(Ξ¦ivβƒ—) \left(βˆ‘ Οƒ_i \Phi_i\right)\vec{v} = βˆ‘ Οƒ_i (\Phi_i \vec{v})

Dimension of L(V,W)\mathcal{L}(\mathcal{V}, \mathcal{W})

If Φ:V→W\Phi : \mathcal{V} → \mathcal{W} is a linear map between finite-dimensional vector spaces, then

(dim⁑V)(dim⁑W)=dim⁑L(V,W) (\dim \mathcal{V}) (\dim \mathcal{W}) = \dim \mathcal{L}(\mathcal{V}, \mathcal{W})

Function Composition

Let Ξ¦i:Viβ†’Vi+ ⁣+\Phi_i: \mathcal{V}_i β†’ \mathcal{V}_{i+\!+} be linear.

Ξ¦2∘Φ1:=Ξ¦2(Ξ¦1(xβƒ—)) \Phi_2 \circ \Phi_1 := \Phi_2 (\Phi_1 (\vec{x}))

Product of Linear Maps

Let Φi:V→W\Phi_i : \mathcal{V} → \mathcal{W}, and Ψi:W→XΨ_i : \mathcal{W} → \mathcal{X}, and Ωi:X→YΩ_i : \mathcal{X} → \mathcal{Y} be linear. Then the product of linear maps is defined as the composition of compatible functions.

(ΨΦ)vβƒ—:=Ξ¨(Ξ¦vβƒ—) (Ξ¨ \Phi) \vec{v} := Ξ¨ (\Phi \vec{v})

Where vβƒ—βˆˆV\vec{v} ∈ \mathcal{V}.

Ring of linear maps

Linear maps form a ring.

Ω(ΨΦ)=(ΩΨ)Φ Ω(Ψ\Phi) = (ΩΨ)\Phi
ΦIV=IWΦ=Φ \Phi \mathrm{I}_\mathcal{V} = \mathrm{I}_\mathcal{W} \Phi = \Phi
Ψ(Φ1+Φ2)=ΨΦ1+ΨΦ2 Ψ (\Phi_1 + \Phi_2) = Ψ \Phi_1 + Ψ \Phi_2
(Ξ¨1+Ξ¨2)Ξ¦=Ξ¨1Ξ¦+Ξ¨2Ξ¦ (Ξ¨_1 + Ξ¨_2) \Phi = Ξ¨_1 \Phi + Ξ¨_2 \Phi

Matrix of a Linear Map

For some choice of basis in a vector space, a linear map may be represented as a matrix.

Identity Map

For any linear map Φ:V→W\Phi: \mathcal{V} → \mathcal{W} there also exists linear maps IV,IW\mathrm{I}_\mathcal{V}, \mathrm{I}_\mathcal{W} which act as the right and left identity element under the product of maps.

ΦIV=IWΦ=Φ \Phi \mathrm{I}_\mathcal{V} = \mathrm{I}_\mathcal{W} \Phi = \Phi

Any linear map which fulfills this condition is known as the identity map, denoted I\mathrm{I}, or with a subscript In\mathrm{I}_n for some dimension nn.

Discussion

I\mathrm{I} is also the identity map for its domain.

IV(vβƒ—)=vβƒ—,vβƒ—βˆˆV \mathrm{I}_\mathcal{V}(\vec{v}) = \vec{v}, \quad \vec{v} ∈ \mathcal{V}
IW(wβƒ—)=wβƒ—,wβƒ—βˆˆW \mathrm{I}_\mathcal{W}(\vec{w}) = \vec{w}, \quad \vec{w} ∈ \mathcal{W}

Invertible Maps

A linear map Ξ¦:Vβ†’W\Phi: \mathcal{V} β†’ \mathcal{W} is invertible if there exists a linear map Ξ¦βˆ’1:Wβ†’V\Phi^{-1}: \mathcal{W} β†’ \mathcal{V} such that:

(Ξ¦βˆ’1)(Ξ¦)=IV (\Phi^{-1}) (\Phi) = \mathrm{I}_\mathcal{V}
(Ξ¦)(Ξ¦βˆ’1)=IW (\Phi) (\Phi^{-1}) = \mathrm{I}_\mathcal{W}

Discussion

If one interprets functions as having a direction from the source to the target, then right-cancellation in typical notation is an inversion prior to the map, and left-cancellation is an inversion after the map.

Morphisms on Vector Spaces

A morphism is a structure-preserving map between structured sets, such as vector spaces.

Homomorphism

A vector space homomorphism is an alternative definition of linear map. As a vector space is minimally equipped with a vector addition and scaling operation, those are the two operations which must be preserved by a vector space homomorphism.

Monomorphism (Injection)

A monomorphism is any left-cancellative homomorphism, and a vector space monomorphism is any injective linear map.

Ξ¦vβƒ—1=Ξ¦vβƒ—2⟢vβƒ—1=vβƒ—2 \Phi \vec{v}_1 = \Phi \vec{v}_2 ⟢ \vec{v}_1 = \vec{v}_2

Equivalently, a linear injection Ξ¦:Vβ†ͺW\Phi: \mathcal{V} β†ͺ \mathcal{W} can be defined as the condition of having a left-inverse Ξ¦Lβˆ’1:Wβ†’V\Phi^{-1}_L: \mathcal{W} β†’ \mathcal{V} such that:

IV=Ξ¦Lβˆ’1∘Φ \mathrm{I}_\mathcal{V} = \Phi^{-1}_L \circ \Phi
Ξ¦Lβˆ’1=(Φ⊺Φ)βˆ’1Φ⊺ \Phi^{-1}_L = (\Phi^⊺ \Phi)^{-1} \Phi^⊺

In the Abelian context there is no difference between cancellation and the existence of an inverse, and thus a bimorphism is an isomorphism. The rest of the article won’t distinguish between the two concepts.

Epimorphism (Surjection)

An epimorphism is any right-cancellative homomorphism, and a vector space epimorphism is a linear surjection. Equivalently, a linear surjection Ξ¦:Vβ† W\Phi: \mathcal{V} β†  \mathcal{W} can be defined as the condition of having a right-inverse Ξ¦βˆ’1:Uβ†’V\Phi^{-1}: \mathcal{U} β†’ \mathcal{V} such that:

IW=Φ∘ΦRβˆ’1 \mathrm{I}_\mathcal{W} = \Phi \circ \Phi^{-1}_R
Ξ¦Rβˆ’1=Φ⊺(ΦΦ⊺)βˆ’1 \Phi^{-1}_R = \Phi^⊺ (\Phi \Phi^⊺)^{-1}

Isomorphism (Bijection)

A linear isomorphism is any bijective linear map.

Endomorphism

A linear endomorphism is any linear map from a vector space to itself, and the set of all endomorphisms may be denoted L(V)\mathcal{L}(\mathcal{V}). In the context of matrices, a square matrix is equivalent to an endomorphism.

Automorphism

A vector space automorphism is any linear self-bijection, and in the context of matrices an invertible square matrix is equivalent to an automorphism. For matrices all isomorphisms are automorphisms, but in a more abstract context R2β†’C\mathsf{R}^2 β†’ \mathsf{C} is not an endomorphism.

graph TD
	 auto[auto];
	 endo[endo];
	 iso[iso];
	 homo[homo];
	 epi[epi];
	 mono[mono];
	 
   auto --> endo
   auto --> iso
      endo --> homo
      iso --> mono
      iso --> epi
         mono --> homo
         epi --> homo

The set of all automorphisms on an nn-dimensional vector space V\mathcal{V} over a field π–₯π–₯ is known as the general linear group, and is denoted GL⁑(n,π–₯)\operatorname{GL}(n, π–₯), or more generally GL⁑(V)\operatorname{GL}(\mathcal{V}).

In other words, the general linear group is another name for the automorphism group on V\mathcal{V}.

Discussion

Linear Forms

Let V\mathcal{V} be a vector space over π–₯π–₯.

Discussion

Transposition

Let Ξ¦:Vβ†’W\Phi: \mathcal{V} β†’ \mathcal{W} be a linear map. Then there is a dual map Ξ¦βˆ—:Vβˆ—β†’Wβˆ—\Phi^*: \mathcal{V}^* β†’ \mathcal{W}^* such that:

Restriction of Linear Map to Subspace

Let Φ:V→W\Phi: \mathcal{V} → \mathcal{W} be a linear map, and let V1\mathcal{V}_1 be a subspace of V\mathcal{V}. Then ΦV1\Phi_{\mathcal{V}_1} denotes the restriction of Φ\Phi to act only on the subspace of V1\mathcal{V}_1.